
ISRAEL JOURNAL OF MATHEMATICS 165 (2008), 211–231

DOI: 10.1007/s11856-008-1010-5

TIGHT UPPER BOUNDS

ON THE NUMBER OF INVARIANT

COMPONENTS ON TRANSLATION SURFACES

BY

Yoav Naveh

Department of Mathematics, Ben Gurion University

Be’er Sheva, Israel 84105

e-mail: navehy@math.bgu.ac.il

ABSTRACT

An abelian differential on a surface defines a flat metric and a vector field

on the complement of a finite set of points. The vertical flow that can be

defined on the surface has two kinds of invariant closed sets (i.e. invariant

components) — periodic components and minimal components. We give

upper bounds on the number of minimal components, on the number of

periodic components and on the total number of invariant components in

every stratum of abelian differentials. We also show that these bounds are

tight in every stratum.

1. Introduction and statement of the results

Let S be a compact oriented surface with complex structure, and Φ a holomor-

phic abelian differential on S having zeros at Σ = {p1, . . . , pn}. A comprehen-

sive description of such surfaces, also called translation surfaces, can be found

in [EMZ]. The pair (S, Φ) admits the following geometric structure — on S\Σ

there is an atlas of open sets and coordinate charts such that the transition

functions defined on the overlaps are translations. This results in a flat metric

on S\Σ with cone-type singularities at points in Σ, and whose associated holo-

nomy group on S\Σ is trivial. The angles around these cone-type singularities

are integer multiple of 2π, and one can define a vector field on S\Σ. Following
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[EMZ] we call a surface with such a flat structure a flat surface. Denoting the

pre-image of the vertical direction in the plane the vertical direction, there is

a well-defined vertical foliation on S\Σ. A critical leaf of the foliation is a leaf

coming out of a singular point. On the complement of the critical leaves a flow

in the vertical direction can be defined (called the vertical flow). When we refer

to a flat surface we always assume that a vertical direction (and hence a vertical

flow) is specified.

It is known that the vertical flow decomposes a flat surface into a finite union

of invariant components, which can be either periodic or minimal, and that the

boundaries of those components are comprised of saddle connections. Call a

point p on S generic, if p is not on a critical leaf (i.e. the orbit of p under the

vertical flow is defined). If p is a generic point whose orbit under the vertical

flow is a closed geodesic (i.e. periodic point), nearby points are also periodic with

orbits that are parallel to the original closed geodesic and of the same length. A

maximal closed connected subset of closed geodesics is a periodic component. Its

boundary is a closed curve comprised of saddle connections (possibly one closed

saddle connection), with the internal angles inside the periodic component,

between the outgoing and incoming edges, exactly π (the converse is also true;

such a boundary curve is the boundary of a periodic component). We call a

closed curve comprised of saddle connections in the vertical direction a vertical

circle. A minimal component is the closure of the orbit of a generic, nonperiodic

point. The intersection between a minimal component and a horizontal segment

on the flat surface is a finite union of nondegenerate closed intervals (this is due

to [Bo]), so a minimal component has “nonzero width” at any point. The

restriction of the flow to a minimal component is a minimal flow — every semi-

orbit (of a generic point) is dense.

Let α be a partition of 2g − 2 (i.e. a representation of 2g − 2 as an unordered

sum of positive integers). Let H(α) denote the moduli space of pairs (S, Φ)

where S is a compact surface of genus g with complex structure and Φ a holo-

morphic abelian differential on S such that the orders of its zeros are given by

α. A zero of order a corresponds to an angle of (2a + 2)π around the singular

point. H(α) is also called a stratum.

The problem this paper deals with is finding optimal upper bounds in each

stratum on the number of minimal components, on the number of periodic

components, and on the total number of invariant components. We state two



Vol. 165, 2008 TIGHT UPPER BOUNDS 213

theorems solving this problem completely. The first theorem deals with min-

imal components, and the second deals with all invariant components, and in

particular with periodic components.

Theorem 1: Let H = H(a1, a2, . . . , aj) be a stratum of surfaces of genus g.

(1) If ai ≤ g − 1, i = 1, 2, . . . , j, then for every flat surface in H an upper

bound on the number of minimal components is g, and this bound is

tight.

(2) Otherwise, for every flat surface in H an upper bound on the number

of minimal components is g − 1, and this bound is tight.

Remark 1.1: The stratum H(∅) is considered as a stratum fulfilling the first

condition.

Let M denote the number of minimal components, and P denote the number

of periodic components on a flat surface.

Theorem 2: Let H =H(a1, a2, . . . , aj)be a stratum of surfaces of genus

g ≥ 2. Denote B = {i : ai is odd}. Fix 0 ≤ M ≤ g − 1 and denote

m = max {0, M − [g − 1 − |B|/2]}, then for every flat surface in H

M + P ≤ g − 1 + j − m,

and this bound is tight.

If M = g, then P = 0 and M + P = g.

Where | ·| means the number of elements in a set. The upper bound in the

case M = 0, was proved by J. Smillie.

Remark 1.2: In the last theorem, the meaning of the bound being tight in a

stratum, is that for every M (between 0 and g − 1) there is a surface in that

stratum that causes the inequality to be an equality.

We prove the upper bounds in Section 2 and show the bounds are tight in

Section 3.
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2. Upper bounds

Before we go on and prove the upper bounds, we want to establish a general

equality that connects the total angle around all singular points on a flat surface

with its Euler characteristic. This equality is a slight generalization of a known

equality resulting from Gauss–Bonnet formula

(2.1)

j∑

i=1

(ki − 2) = 4g − 4,

where S is a flat surface (without boundary) of genus g with angles k1, k2, . . . , kj

at the singular points.

In this paper we consider also surfaces with boundary. We call an oriented

surface with boundary S a flat surface if S has a flat structure, and, in addition,

its boundary curves are vertical (vertical circles or closed vertical geodesics).

Note that we allow singular points on the boundary with internal angles multiple

of π.

From here on we will use the following terminology and notations

(1) We define two types of singular points on a flat surface with bound-

ary. Singular points of type 1 are singular points which are not on the

boundary of the flat surface. The total number of such points is de-

noted by j(1). Singular points of type 2 are singular points which are

on the boundary of the flat surface. The total number of such points is

denoted by j(2). We have j = j(1) + j(2), where j is the total number

of singular points.

(2) C will denote the number of connected components of a surface (when

each connected subsurface is a flat surface with boundary). The genus

of a non-connected surface will be the sum of genera of the connected

components.
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(3) B will denote the number of boundary components. By our early defini-

tion each boundary component is comprised of vertical circles or closed

vertical geodesics.

(4) When we refer to an angle ki , we mean an angle of kiπ. If (S, Φ) is a

flat surface in H(a1, a2, . . . , aj), then by ki we refer to the angle around

the zero of order ai, and ki = 2ai + 2.

(5) Let S be a flat surface with boundary, with angles of k1, k2, . . . , kj . Note

that some of these points can be singular points of type 2, in which case

the angle is measured when circling around the singular point and inside

the surface. We denote by I the quantity

I =

j(1)∑

i=1

(ki − 2) +

j(2)∑

i=1

(ki − 1).

Remark 2.1: The meaning of internal angle explained in (5) is also applicable

in the following case: if L is an invariant component on a flat surface, and p

a singular point on the boundary of L, then the internal angle of p in L is the

angle that is measured when circling around p and inside L.

The following lemma is well-known.

Lemma 2.2: Let S1 be a (not necessarly connected) flat surface with boundary

of genus g. Then

I = 4g − 4 + 2B− 4(C − 1).

If S1 is connected then the equality becomes

(2.2) I = 4g − 4 + 2B.

Remark 2.3: Equation (2.2) in a more familiar form (as a version of the Gauss–

Bonnet formula) is obtained by substituting 4g − 4 + 2B with −2χ, where χ is

the Euler characteristic of the surface, and multiplying both sides by −π.

Let us define how to cut flat surfaces along vertical curves. Let β be a vertical

curve on a flat surface S. The resulting flat surface after cutting S along β is the

completion of S\β by the path metric. It is important to note that although the

boundary of an invariant component can consist of two vertical circles with a

common singular point (like Figure 8), and more complicated configurations of

this sort, after cutting a flat surface along any configuration of vertical curves,

its boundary will be comprised out of disjoint vertical circles and/or closed
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geodesics (i.e. every connected boundary component is either a vertical circle

or a closed geodesic).

Since we were unable to find a suitable reference, we include the following

sketch of a proof.

Sketch of proof of Lemma 2.2. Since all the quantities are additive, we can re-

strict ourselves to the connected case. If S1 has no boundary, then the claim

follows from equality (2.1). If S1 is a flat surface with boundary, we can “close”

it to a flat surface without boundary S, by identifying its boundary with the

boundary of its mirror image. For S the claim holds, and now we separate S

back to S1 and its mirror image and record the change in all the quantities

present in the lemma. In particular, I remains unchanged. Since all the quan-

tities of S1 are exactly half of the corresponding quantities on S, the equality

for S1 is easily established.

The following proposition is the main step in proving Theorem 1.

Proposition 2.4: Let S be a flat surface with boundary of genus g, then an

upper bound on the number of minimal components is g.

Proof. The proof will be by induction on the genus g. Assume g = 0. If S

has no boundary there is nothing to prove, as there is no abelian differential

over the sphere. Assume, by contradiction, that S is a flat surface of genus zero

and there is at least one minimal component on S. If there is more than one

invariant component, we cut along the boundary of the minimal component and

are left with a genus zero flat surface with exactly one minimal component. By

Lemma 2.2 we have

I = 4g − 4 + 2B = −4 + 2B,

for S. Every vertical circle on the boundary contains at least one singular

point. If there is exactly one singular point, then the boundary is a closed

saddle connection, and its incoming and outgoing directions at the singular

point are opposite. Thus the internal angle at the singular point is of the form

(2n + 1)π , 1 ≤ n ∈ N (if n equals 0 the invariant component must be periodic),

and so is at least 3π. If there is more than one singular point, each has an

internal angle of at least 2π. From this we conclude that each vertical circle on

the boundary of a minimal component adds at least 2 to I, and so

2B ≤ I = −4 + 2B ,
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a contradiction.

In the general case, let g be greater then zero, and S be a flat surface with

boundary. If S has one minimal component there is nothing to prove. Other-

wise, as there is more than one invariant component, there must be a boundary

curve of a minimal component to cut along. Note that although the boundary

of an invariant component is comprised of vertical circles, some edges (i.e. sad-

dle connections) — but not all — on the boundary curve along which we cut

can be on the boundary of S. After the cut, we fall into exactly one of the two

following cases:

(1) The resulting flat surface S̃ is connected.

Then g̃ = g − 1 and by the induction hypothesis, the number of

minimal components on S̃ is at most g̃. But this is exactly the number

of minimal components on the original flat surface.

(2) There are two connected flat surfaces S1 and S2 of genera g1, g2, and

g1 + g2 = g.

If g1, g2 > 0, then g1, g2 < g, and using the induction hypothesis and

the additivity of the number of minimal components, the claim follows.

If, for example, g1 = 0, then by the base case, S1 has no minimal

components. So we just cut again until we fall into one of the first two

cases (this process is, of course, finite).

As one can see from the last proof, if the curve one cuts along does not

separate the flat structure into two connected components, the bound that

results is actually better: g − 1. We now analyze this phenomenon in more

detail.

Definition 2.5: Let (S, Φ) be a flat surface. Let Ŝ be the universal cover of S\Σ,

where Σ is the collection of singular points. There is an isometric map of Ŝ to

R
2 called the developing map, which maps a lift α̃ of an oriented curve α on

(S, Φ) to a curve in R
2. We denote by hol(α) the difference of the endpoints of

the image. The vector hol(α) ∈ R
2 is called the holonomy vector of α.

The following argument appears in [EMZ]. In term of the atlas of charts

defining the flat structure, the corresponding abelian differential has the form

ω = dz = dx + idy. This has an important consequence: for any oriented

curve β on (S, Φ), the holonomy vector of β coincide with the integral
∫

β
ω of

ω over β. Since the 1-form is closed, it means, in particular, that if β and α are
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homologous, then hol(β) = hol(α) (when a path β joins a pair of distinct points

we say that a path α is homologous to β if it joins the same pair of points and

if the closed loop β ·α−1 is homologous to zero, that is, breaks the surface into

two components).

Combining the observations made in the last paragraph with Proposition 2.4

we obtain

Corollary 2.6: If a flat surface (S, Φ) of genus g has a vertical circle or closed

vertical geodesic that is not homologous to zero then an upper bound on the

number of minimal components is g − 1.

Proof. Cutting along such a curve keeps the flat surface connected.

Corollary 2.7: If a flat surface (S, Φ) of genus g has a periodic component

then an upper bound on the number of minimal components is g − 1. This

proves the last statment in Theorem 2.

Proof. The integral over a closed geodesic in the interior of the periodic com-

ponent cannot be zero, so cutting along such a curve keeps the flat surface

connected.

In order to complete the proof of the upper bounds stated in Theorem 1

we have to show that if (S, Φ) is a flat surface over a surface of genus g in

H(a1, a2, . . . , aj) with g minimal components, then ai ≤ g − 1, i = 1, 2, . . . , j.

Definition: A slit on a flat surface is obtained by cutting along a vertical seg-

ment pp′ in the interior of an invariant component. The surface now has an

additional boundary component which is a vertical circle with two antipodal

singular points p and p′. Denote the two saddle connection comprising the slit

γ1 and γ2. If we choose two points, one on γ1 and the other on γ2 , equidistant

from p and identify them we get a slit with two points identified (see Figure 1).

Remark 2.8: A boundary of a flat surface cannot be a slit with identified points,

as this does not even qualify as a surface with boundary. However, a slit with

identified points can occur as a boundary of an invariant component inside a

flat surface. This will be the case we will refer to in the proof.

Proof of Theorem 1. Let (S, Φ) be a flat surface of genus g in
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Figure 1. A genus 3 flat surface with three invariant components in

H(2, 1, 1). The boundary of M1 is a slit with identified points. The

boundaries of M2 and M3 are slits.

H(a1, a2, . . . , aj) and assume that (S, Φ) has g minimal components. By

Corollary 2.6 all the boundary curves are homologous to zero. Cutting along all

the boundary curves we get g sub-surfaces with boundary N1, N2, . . . , Ng and

each Ni has exactly one invariant component which is minimal. By Proposition

2.4 the genus gi of Ni is equal to or greater than one. Since
∑j

i=1 gi = g, we

have gi = 1 for all i. By Lemma 2.2

(2.3) Ii = 4gi − 4 + 2Bi = 2Bi , i = 1, 2, . . . , g.

By a previous argument (proof of Proposition 2.4, base case) each boundary

component of a minimal components adds at least two to I, and from (2.3)

it follows that each boundary component adds exactly two to I. Since every

boundary component has at least one singular point there are only two options

for each boundary curve:

(1) There is one singular point with an internal angle of 3π.

(2) There are two singular points each with an internal angle of 2π.

Option (1) is not possible as such a boundary curve is not homologous to zero.

In option (2) note that the two singular points need to be antipodal for the

boundary curve to be homologous to zero. So all boundary components on our

sub-surfaces look the same, they are slits. It is important to note that on (S, Φ)

a minimal component can have a slit with identified points as boundary, but

after the cuts are performed a slit with identified points turns into a slit.
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To conclude: if (S, Φ) has g minimal components, then all of them are tori

with either slits or slits with identified points and all slits are homologous to zero.

In particular, all singular points are on the boundaries of minimal components.

If L is a minimal component and p a singular point on the boundary of L

then the internal angle around p in L is at most 2π (see Lemma 2.9 below).

If so, the maximal angle around any singular point on (S, Φ) is 2gπ, and the

maximal order of a zero is g−1. This completes the proof (of the upper bounds)

of Theorem 1.

Lemma 2.9: Let (S, Φ) be a flat surface of genus g with g minimal components.

If L is a minimal component and p a singular point on the boundary of L then

the internal angle around p in L is at most 2π.

Proof. The lemma follows directly from the fact that all the minimal compo-

nents are tori with slits and/or slits with identified points (as explained in the

previous proof).

In order to prove Theorem 2, we will first prove a weaker claim.

Proposition 2.10: Let (S, Φ) be a flat surface of genus g ≥ 2 in a stratum

H(a1, a2, . . . , aj), then an upper bound on the total number of invariant compo-

nents on (S, Φ) is g−1+j. That is, if M is the number of minimal components,

P the number of periodic components on (S, Φ), then M + P ≤ g − 1 + j.

Proof. The proof is based on an argument of J. Smillie.

If P = 0, by Theorem 1 the inequality holds. Let γ1, γ2, . . . , γr be core curves

(i.e. closed vertical geodesics in the interior of periodic components) in the

P periodic components. Cutting along these curves results in N1, N2, . . . , Ns

sub-surfaces. Cutting along each curve creates two boundary components, so

the total number of boundary components on these sub-surfaces is 2P. Let Bi

denote the number of boundary components on a sub-surface Ni. The Euler

characteristic of Ni is χ(Ni) = 2− 2gi −Bi, so Bi = 2− 2gi −χ(Ni). Summing

over the sub-surfaces Ni and using the additivity of the Euler characteristic we

get

(2.4) P =
1

2

s∑

i=1

Bi =
1

2

s∑

i=1

(2 − 2gi − χ(Ni)) = s −
1

2
χ(S) −

s∑

i=1

gi.
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The sub-surfaces N1, N2, . . . , Ns contain the M minimal components. By Propo-

sition 2.4, if there are Mi minimal components on a sub-surface Ni then Mi ≤

gi, so M ≤
∑s

i=1 gi. Plugging into (2.4) we get

P ≤ s −
1

2
χ(S) − M = s + g − 1 − M

or

(2.5) M + P ≤ s + g − 1.

We will now bound s. Each boundary curve of every invariant component

contains a singular point, so every sub-surface contains at least one singular

point. Therefore, s ≤ j and the proof is complete.

Proof of Theorem 2. In case m = 0 the theorem follows from Proposition 2.10.

We now consider the case where m > 0.

Let us define the set B (from Theorem 2) and its complement set Bcomp in

term of the angles ki rather than the orders of the zeros ai (remember that

ki = 2ai + 2). Denote B = {i : ki = 4ni, ni ∈ N} and Bcomp = {i : ki =

4ni + 2, ni ∈ N}, where the stratum is H(a1, a2, . . . , aj).

It follows from equality (2.1) that

(2.6) g − 1 −
|B|

2
=

∑

i∈Bcomp

ni +
∑

i∈B

(ni − 1) = M − m .

In the previous proof we saw that M + P ≤ s + g − 1. We will now show that

s ≤ j − m.

Let L be a minimal component on a flat surface with more than one invariant

component, and look at the boundary of L. It consists of a union of vertical

circles, and each circle contains a singular point. If L has exactly one singular

point, which must be on its boundary, L has exactly one connected boundary

component. This connected boundary component of L is a union of vertical

circles whose intersection is exactly the singular point (denoted by p). The

circles are cyclically arranged around the sole singular point, and each vertical

circle is a closed saddle connection (topologically, this looks like a flower, where

the petals are the closed saddle connections). As this is the only boundary

component of L, this boundary component consists of at least two closed saddle

connections, and so at least two internal angles around p (one closed saddle

connection is not homologous to zero, which is impossible by the beginning of

this sentence). As this boundary curve is homologous to zero, there are at least
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two even internal angles around p (an even angle is an angle of an even multiple

of π). To conclude, a minimal component with exactly one singular point on

its boundary (and no singular points in its interior) has a total angle of at least

4π around the singular point.

Let p be a singular point on S with an angle of kπ. We will bound the

number x of minimal components L such that p lies on the boundary of L,

and the boundary of L contains no other singular points. It follows from the

previous paragraph that if k = 4n + 2, then x is at most n, and we claim that

if k = 4n then x is at most n − 1. This can be explained in two ways.

First, if there are exactly n such minimal components around p, these are

all the invariant components around p. But then, the neighborhood of p is not

homeomorphic to a disc. This can be visualized if you start with n minimal

tori with slits glued to one another in cyclic order - the tori are glued around

two singular points (the upper and lower ends of the slits), and then identify

the two singular points on the flat surface. Second, if this is the case then p

must be the only singular point on the flat surface: p is the only singular point

contained in those n minimal components. If we assume that there are more

singular points on the flat surface then these singular points are in different

components. But these different components cannot be connected to our initial

n minimal components as each boundary between invariant components must

contain a singular point, so this is impossible. Now, if p is the only singular point

on the flat surface then k−2 = 4n−2 6= 0 (mod 4), and by equality (2.1) this is

impossible. We already know that s ≤ j. Let us compute the maximal number

of minimal components with exactly one singular point (on the boundary) that

can occur on a flat surface (S, Φ) in a stratum H(a1, a2, . . . , aj). By all that

was said, there can be no more than

∑

i∈Bcomp

ni +
∑

i∈B

(ni − 1)

such minimal components on (S, Φ). If so, there are at least m minimal com-

ponents (m as can be extracted from equality (2.6)) with at least two sin-

gular points in them. The collection of singular points on the sub-surfaces

N1, N2, . . . , Ns gives a partition of the set of all singular points into s nonempty

subsets. The last statement indicated that at least m of these subsets contain

two or more singular points. So s ≤ j − m and plugging it into (2.5) gives
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M + P ≤ g − 1 + j − m. This completes the proof of the upper bounds of

Theorem 2.

3. Constructions realizing the bounds

The general scheme in this section will be to present specific constructions in

low genera and then use induction to generalize these constructions.

For our concrete constructions we will use a small number of “building

blocks,” that are defined formally below. Some of the constructions are “zip-

pered rectangles” constructions, defined by Veech (see [Ve]). In short, this

construction involves a suspension over interval exchange transformations (iet

for short)—let T be an iet with a permutation Π and a length vector X =

(X1, X2, . . . , Xn). For each sub-interval Xi of an iet T , a rectangle is defined.

The bottom edge of the rectangle is identified with Xi, the upper edge is iden-

tified with the image of Xi by T and the sides are identified with each other

in a way dictated by the permutation of T . This results in a compact surface

with an abelian differential. Following Veech, the permutation of the iet (and

the number of intervals) define a specific stratum to which the corresponding

zippered rectangle belongs. Beside the permutation there are 3 n-tuples (for an

n interval iet) that determine a construction:

(1) X = (X1, X2, . . . , Xn). These are the lengths of the sub-intervals of the

iet.

(2) h = (h1, h2, . . . , hn). These are the heights of the rectangles.

(3) a = (a1, a2, . . . , an). These are the the locations of the singular points

on the surface. Roughly, it defines up until which points adjacent rect-

angles will be identified one to the other (“zippered together”).

All this data is subjected to a set of equalities and a set of inequalities as

described in [Ve].

building blocks.

Slit torus: Take a flat torus T and cut it along a vertical slit of length d.

A slit torus can be minimal or periodic.

Figure-8 torus: Take a slit torus and identify the two type 2 singular

points on the boundary. The resulting surface has one boundary com-

ponent with one singular point (denote it p) and two closed (vertical)
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saddle connections of equal length. The total internal angle around p

is 4π. A figure-8 torus can be minimal or periodic (see figure 2).

p

(a) (b)

Figure 2. In (a) (left) we illustrate the process of turning a slit to a

figure-8 boundary. In (b) (right) there is a figure-8 torus.

We now prove the first case in Theorem 1.

In the case of H(∅), a minimal torus realizes the bound of g = 1.

Proposition 3.1: Let H = H(a1, a2, . . . , aj) be a stratum of surfaces of genus

g ≥ 2, such that ai ≤ g − 1, i = 1, 2, . . . , j. Then there exists a flat surface in

H with g minimal components.

Moreover, for every 1 ≤ k < l ≤ j there exists a flat surface (S, Φ) with g min-

imal components and with two singular points pk, pl of orders ak, al respectively

such that there is a saddle connection between pk and pl on (S, Φ).

Before we continue to the proof we need to establish the following claim.

Lemma 3.2: Let (S, Φ) be a flat surface of genus g ≥ 2 with g minimal com-

ponents, p a singular point on (S, Φ). Then there exists a minimal component

L, with p on its boundary such that the boundary component of L containing

p is a slit (and p the top or bottom end of that slit).

Proof. The proof is by induction on the genus g. From the proof of Theorem

1 in the previous section, we know that all the minimal components on (S, Φ)

are tori with slits or slits with identified points and all the slits are homologous

to zero. If g = 2, the only stratum is H(1, 1) and (S, Φ) must be two slit tori

glued along the slits, so the claim holds. In the general case, there must be a

minimal component on (S, Φ) which is a torus with a single slit (this is easily

proved by another induction). If p is on the boundary of this torus we are
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done. Otherwise, cut this torus from (S, Φ) and close the slit on the remaining

surface. The resulting flat surface is of genus g − 1 and we apply the induction

hypothesis. Since the neighborhood of p is not effected by this cutting process

the minimal component L also exists on (S, Φ).

Proof of Proposition 3.1. The proof is by induction on the genus g.

If g = 2 the only stratum to consider is H(1, 1). If we take two minimal

slit tori and glue them one to the other along the slits, we get the desired flat

surface in H (there is only one choice for k and l).

Now assume that g ≥ 3. Let H(a1, a2, . . . , aj) be a stratum as described in

the proposition (over a surface of genus g ≥ 3). Fix k, l, 1 ≤ k < l ≤ j. We

separate into two cases

• H is of the form H(g − 1, a2, a3, . . . , aj).

We describe explicitly how to build a flat surface meeting all the

conditions stated in the proposition.

First, we take a2+1 minimal slit tori and glue them together in cyclic

order: each slit consists of two saddle connections a left one and a right

one. Glue the left saddle connection of the first torus isometrically

to the right saddle connection of the second torus, then glue the left

saddle connection of the second torus isometrically to the right saddle

connection of the third torus and so forth. Finally glue the left saddle

connection of the last torus isometrically to the right saddle connection

of the first torus. All the top ends of the slits should be identified to a

point as well as all the bottom ends (we call this operation gluing slit tori

around a slit). We get a flat surface with no boundary with two singular

points p1 and p2 of order a2 each, and assume that p1 is the top one.

Second, on one of the saddle connections that exist on the flat surface,

mark a (regular) point p3 (above p2 and below p1). Cut the surface

along the vertical line between p1 and p3. Around the slit, we glue a3

minimal slit tori in the same fashion. Now our flat surface has three

singular points p1, p3 and p2 (top to bottom) of orders a2 + a3, a3, a2

respectively. We continue in this way until we get a flat surface in H

with j singular points of orders
∑j

i=2 ai = g − 1, aj, aj−1, . . . , a2. This

surface is of genus g and it is easy to see from the construction that it

has g minimal components.
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If ak = g−1 or al = g−1 there is always a saddle connection between

the singular points pk and pl, as there are saddle connections between

the singular point of order g−1 and any other singular point. Otherwise,

just permute the set {a2, a3, . . . , aj} so ak and al are adjacent. Note

that the stratum H(g − 1, g − 1) is included in this case.

• H is of the form H(a1, a2, a3, . . . , aj) where ai < g − 1 for all i.

Look at the stratum

H′(a1, . . . , ak−1, ak − 1, ak+1, . . . , al−1, al − 1, al+1, . . . , aj)

over a surface of genus g−1 (it is possible that ak−1 = 0 or al−1 = 0).

Now, ai ≤ g − 2, i = 1, 2, . . . , j and by the induction hypothesis there

exists a flat surface (S′, Φ′) in H′ with g−1 minimal components and a

saddle connection between the singular points pk and pl of orders ak−1,

al − 1, respectively. Cut along this saddle connection and glue to the

slit a minimal slit torus. This results in a flat surface (S, Φ) in H with

g minimal components and the required saddle connection.

If ak −1 = 0 and al−1 = 0, just mark a vertical segment on (S′, Φ′).

Cut along this segment and glue to the slit a minimal slit torus.

If ak − 1 = 0 and al − 1 > 0 (or the symmetric case), look at the

singular point pl on (S′, Φ′). According to Lemma 3.2 there exist a

minimal component L with pl being a top or bottom end of a slit in

the boundary of L. So we can always mark a vertical segment in the

interior of L starting at pl. Cut along this segment and glue to the slit

a minimal slit torus.

The second case of Theorem 1 is a corollary of Proposition 3.4 below (the

case where M = g − 1).

Before we start with the bounds in Theorem 2, we present two more building

blocks coming from zippered rectangles that we will use.

P3: This is a flat surface of genus 2 in H(1, 1) realized via a zippered

rectangles construction. The parameters are:

The permutation Π

Π =

(
1 2 3 4 5

5 4 3 2 1

)
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M1
M2

M3

M4

Figure 3. A genus 4 flat surface with 4 minimal components, all minimal

tori with slits. This flat surface lies in H(2, 2, 1, 1).

the 3 n-tuples are

X =

(
1

6
,

1

6
,

1

6
,

1

6
,

1

6

)
h =

(
1 ,

3

2
, 1 ,

3

2
, 1

)
a =

(
1

2
,

1

2
, 0 , 1 , −

1

2

)

By Veech’s construction, this data give rise to a flat surface in H(1, 1),

which we denote by P3. P3 has three periodic components (can easily

be seen by looking at Π and X). The lengths of the periodic orbits are

1, 2 and 3.

P2: This is a flat surface of genus 2 in H(2) realized via a zippered rect-

angles construction. The parameters are:

The permutation Π

Π =

(
1 2 3 4

4 3 2 1

)

the 3 n-tuples are

X =

(
1

4
,

1

4
,

1

4
,

1

4

)
h = (1 , 1 , 1 , 1) a = (1 , 0 , 1 , 0)

This data give rise to a flat surface in H(2), which we denote by P2.

P2 has two periodic components (can easily be seen by looking at Π

and X).

The next proposition proves that the bound stated in Theorem 2 is tight

in every stratum in the case of totally periodic surfaces, that is, surfaces with

periodic components only (and no minimal components).
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Proposition 3.3: Let H = H(a1, a2, . . . , aj) be a stratum of surfaces of genus

g ≥ 2. Then there exists a flat surface in H with g − 1 + j periodic components

(and no minimal components). Moreover ,if H is the principal stratum then

there exists a periodic component with orbit length 2.

Proof. First we address the case where H is the principal stratum, that is

H(1, 1, . . . , 1︸ ︷︷ ︸
j

). The proof will be by induction on the number of singular points

j (which is always even). The building block P3 proves the case where j = 2 as

g − 1 + j = 3. P3 has a periodic component of length 2.

In the general case, Look at the stratum H′(1, 1, . . . , 1︸ ︷︷ ︸
j−2

). This stratum lies

over a surface of genus g − 1. By the induction hypothesis there exists a flat

surface (S′, Φ′) in H′ with (g − 1) − 1 + (j − 2) = g − 1 + j − 3 periodic

components. Cut (S′, Φ′) along a closed vertical geodesic in the interior of the

periodic component with orbit length 2. Cut P3 along a closed vertical geodesic

in the interior of the periodic component with orbit length 2. The two surfaces

stay connected after the cuts as the curves are not homologous to zero. Now

identify isometrically one boundary curve of (S′, Φ′) to one boundary curve of

P3 and do the same with the remaining boundary curves. This results in a

flat surface in H, with 3 additional periodic components. So this surface has

g − 1 + j periodic components as desired.

Now assume that H(a1, a2, . . . , aj) is not the principal stratum. If we assume

a1 ≤ a2 ≤ · · · ≤ aj then 2 ≤ aj . Again, we will use induction but now the

induction is on the genus g. If g = 2, the only stratum to consider is H(2). Our

building block P2 realizes the bound in this case as g − 1 + j = 2.

In the general case, let H(a1, a2, . . . , aj) be a stratum over a surface of genus

3 ≤ g. Consider H′(a1, a2, . . . , aj − 2) over a surface of genus g′ = g − 1. There

are two cases to consider

• aj − 2 = 0.

Then H′ can be written H′(a1, a2, . . . , aj−1). According to the in-

duction hypothesis, there is a totally periodic flat surface in H′ with

g′−1+ j′ = g−1+ j−2 periodic components. Let p be a regular point

in the interior of a periodic component, and let us cut along the interior

of the closed vertical geodesic starting (end ending) at p. We now take

a periodic figure-8 torus, and identify its boundary to the boundary of
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our surface to get a closed surface. This process added two periodic

components; one is the torus that was added and the second comes

from splitting the periodic component in which p was chosen into two

periodic components. The resulting surface is in H and has g − 1 + j

periodic components.

• aj − 2 > 0.

By the induction hypothesis, there is a totally periodic flat surface

in H′ with g′ − 1 + j′ = g − 1 + j − 1. Let p by the singular point

corresponding to the aj − 2 order zero. Now we cut along the interior

of the vertical circle starting (and ending) at p and again close the

resulting boundary with the boundary of a periodic figure-8 torus, to

get a flat surface in H with g − 1 + j periodic components.

Now we prove the general case of Theorem 2.

Proposition 3.4: Let H = H(a1, a2, . . . , aj) be a stratum of surfaces of genus

g ≥ 2. Denote B1 = {i : ai is even} and B2 = {i : ai is odd}. Fix 0 ≤ M ≤

g − 1 and denote m = max {0, M − [g − 1 − |B2|/2]}, then:

(1) If M ≤ g−1−|B2|/2 then there exists a flat surface in H with M mini-

mal components and P periodic components such that M+P = g−1+j.

(2) If g − 1 − |B2|/2 < M ≤ g − 1 then then there exists a flat surface in

H with M minimal components and P periodic components such that

2M + P = 2g − 2 + j − |B2|/2. Equivalently, M + P = g − 1 + j − m.

In both cases all singular points lies on the boundary of a periodic component.

Remark 3.5: When one of the bounds is realized, P is always greater than zero.

Proof. The proof will be by induction on the genus g. We assume that a1 ≤

a2 ≤ · · · ≤ aj . In the case of g = 2 there are two strata in genus 2.

• H(2), m = 0. If M = 0 then by Proposition 3.3 the bound is met. If

M = 1, take a minimal figure-8 torus and close its boundary with a

periodic cylinder. Then M + P = g − 1 + j = 2.

• H(1, 1). If M = 0 then by Proposition 3.3 the bound is met. If M = 1

(m = 1) then 2g−2+j− |B2|
2 = 3. Take a minimal slit torus and identify

its boundary with the boundary of a periodic slit torus - 2M + P = 3.

In all the constructions, all singular points are on the boundary of a periodic

component.
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For the general case, we can assume that M 6= 0 (as this case is dealt by

Proposition 3.3). First we consider the case of the principal stratum where

H(1, 1, . . . , 1︸ ︷︷ ︸
j

). A simple computation yields 2g − 2 + j − |B2|
2 = g − 1 + j (and

m = M). Look at the stratum H′(1, 1, . . . , 1︸ ︷︷ ︸
j−2

). This stratum lies over a surface of

genus g′ = g−1. If m = 1, by Proposition 3.3 there exists a totally periodic flat

surface in H′ with P′ = g′−1+(j−2). Slit the interior of a periodic component

and identify the boundary with the boundary of a minimal slit torus. We added

one periodic and one minimal component so now 2M+P = 3+P′ = g − 1 + j.

Otherwise, M > 1 and by the induction hypothesis, there exists a flat surface

in H′ with M′ = M− 1 minimal components and P′ periodic components such

that 2M′ + P′ = g′ − 1 + (j − 2). Perform the same construction to get a flat

surface admitting 2M + P = 2M′ + P′ + 3 = g − 1 + j.

In the remaining case 2 ≤ aj. Consider the stratum H′(a1, a2, . . . , aj−2) over

a surface of genus g′ = g − 1 and |B2| = |B′
2|. As in the proof of Proposition

3.3 there are two cases:

• aj − 2 = 0.

Then H′ can be written H′(a1, a2, . . . , aj−1). According to the in-

duction hypothesis (or Proposition 3.3 in the case where M = 1), there

exists a flat surface in H′ with M′ = M−1 and P′ such that the bound is

realized. Note that M ≤ g−1−|B2|/2 if and only if M′ ≤ g′−1−|B′
2|/2.

Let p be a regular point in the interior of a periodic component, and

let us cut along the interior of the closed vertical geodesic starting (end

ending) at p. We now take a minimal figure-8 torus, and identify its

boundary to the boundary of our surface to get a closed surface. This

process added one minimal component and one periodic component.

If M′ ≤ g′ − 1 − |B′
2|/2, then

M + P = M′ + P′ + 2 = g′ − 1 + (j − 1) + 2 = g − 1 + j.

Otherwise M′ > g′ − 1 − |B′
2|/2 and

2M + P = 2M′ + P′ + 3 = 2g′ − 2 + (j − 1) −
|B′

2|

2
+ 3

= 2g − 2 + j −
|B2|

2
.

• aj − 2 > 0.
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According to the induction hypothesis (or Proposition 3.3 in the

case where M = 1), there exists a flat surface in H′ with M′ = M − 1

and P′ such that the bound is realized. Again it is true that M ≤

g− 1− |B2|/2 if and only if M′ ≤ g′− 1− |B′
2|/2. Let p by the singular

point corresponding to the aj − 2 order zero. We cut along the interior

of the vertical circle starting (and ending) at p, which is a boundary

of a periodic component. Again, we close the resulting boundary with

the boundary of a minimal figure-8 torus, to get a flat surface in H. If

M′ ≤ g′ − 1 − |B′
2|/2 then

M + P = M′ + P′ + 1 = g′ − 1 + j + 1 = g − 1 + j.

Otherwise M′ > g′ − 1 − |B′

2|
2 and

2M + P = 2M′ + P′ + 2 = 2g′ − 2 + j −
|B′

2|

2
+ 2

= 2g − 2 + j −
|B2|

2
.

This completes the proof.
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